Numerical Method | BSc.CSIT (TU) Question Paper 2073 | Third Semester

Download our Android App from Google Play Store and start reading Reference Notes Offline.

Numerical Method 2073Third Semester | Second Year | Tribhuvan University
Old Question Collection | Question Bank
Numerical Method, Year: 2073
Computer Science and Information Technology (CSc 204)
Full Marks: 60 | Pass Marks: 24 | Time: 3 hours

Download Question Paper File
[File Type: PDF | File Size: 844 KB | Download]

Candidates are required to give their answer in their own words as far as practicable.
The figures in the margin indicate full marks.

Attempt all Questions:

  1. Explain the idea of the secant method to estimate the root of any equation. Using the secant method, estimate the root of the equation
    x2 – 4x – 10 = 0
    with the initial estimates of x1=4 and x2=2. Do these points bracket a root?                                                   (3+4+1)
  2. Given the data
    x 1.2 1.3 1.4 1.5
    f(x) 1.063 1.091 1.119 1.145

    Calculate f(1.35) using Newton’s interpolating polynomial of order 1 through 3. Choose base points to attain good accuracy. Comment on the accuracy of results on the order of polynomial.                                           (5+3)

  3. How do you find the derivative if the function values are given in a tabulated form? The distance travelled by a vehicle at the intervals of 2 minutes are given as follows. Evaluate the velocity and the acceleration of the
    Time(sec) 0 2 4 6 8 10 12 14 16
    Distance(km) 0 0.25 1 2.2 4 6.5 8.5 11 13

    Vehicle at time T = 5, 10, 13                                                                                                                                            (3+5)

  4. What do you mean by ill-conditioned systems? Solve the following system using Dolittle L.U decomposition method.
    3x1 + 2x2 + x3 = 10
    2x1 + 3x2 + 2x3 = 14
    x1 + 2x2 + 3x3 = 14                                                                                                                                                           (2+6)
  5. Obtain y(1.5) to the following differential equation using Runge-Kutta 4th order method.
     \frac{dy}{dx} + 2x2y = 1, with y(1) = 0 taking h = 0.25                                                                     (8)
  6. Write the finite difference formula for solving Poisson’s equation. Hence solve the Poisson equation.
    2f = 3x2y
    Over the domain 0≤x≤1.5 and 0≤y≤3 with f=0 on the boundary and h=0.5                                                        (1+7)
  7. Write an algorithm and a C program for the secant method to find the roots of non-linear equation.           (4+8)
    OR
    Write an algorithm and a C program for the Simpson’s 1/3 rule to integrate a given function.                        (4+8)
(Visited 1,228 times, 2 visits today)

Posted By : Digvijay | Comment RSS | Category : Old Question Collection, Third Semester
Tag :

Post a Comment

Your email is never published nor shared. Required fields are marked *

*
*

Wordpress DMCA
Community | Toolbar | Android App | Founder/Developer : Hari Prasad Chaudhary | CSIT Portal Manager : Digvijay Chaudhary