Numerical Method | BSc.CSIT (TU) Question Paper 2070 | Third Semester

Download our Android App from Google Play Store and start reading Reference Notes Offline.

Numerical Method 2070Third Semester | Second Year | Tribhuvan University
Old Question Collection | Question Bank
Numerical Method, Year: 2070
Computer Science and Information Technology (CSc 204)
Full Marks: 60 | Pass Marks: 24 | Time: 3 hours

Download Question Paper File
[File Type: PDF | File Size: 662 KB | Download]

Candidates are required to give their answer in their own words as far as practicable.
The figures in the margin indicate full marks.

Attempt all Questions:

  1. What is bracketing and non-bracketing method? Explain with the help of example. Estimate a real root of following nonlinear equation using bisection method correct upto two significant figures.
    x2 sin x + e-x = 3                                                                                                                                                                 (3+5)
  2. Define interpolation. Find the functional value at x = 3.6 from the following data using forward difference table. (2+6)
    x 2 2.5 3 3.5 4 4.5
    f(x) 1.43 1.03 0.76 0.6 0.48 0.39
  3. Derive Simpson’s 1/3 rule to evaluate numerical integration. Using this formulae evaluate
     \int_{0.2}^{1.2} (x^2 + ln x - sin x) dx         (take h=0.1)                                                              (4+4)
  4. What is pivoting? Why is it necessary? Explain. Solve the following set of equations using Gauss elimination or Gauss Seidal method.
    x1 + 10x2 + x3 = 24
    10x1 + x2 + x3 = 15
    x1 + x2 + 10x3 = 33                                                                                                                                                             (3+5)
  5. Compare Euler’s method with Heun’s method for solving differential equation. Obtain y(1.5) from given differential equation using Runge-Kutta 4th order method.                                                                                    (4+4)
     \frac{dy}{dx} + 2x2y = 1 with y(1)=0                    [take h=0.25]
    OR
    Solve the following boundary value problem using shooting method.
     \frac{d^2 y}{ dx^2} – 2x2y = 1, with y(0) = 1 and y(1) = 1     (take h=0.5)                                     (8)
  6. Solve the equation  \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 3?2? over the square domain 0≤?≤1.5 and 0≤?≤1.5 with ? = 0 on the boundary.     (take ℎ=0.5).                                (8)
  7. Write an algorithm and C-program to approximate the functional value at any given x from given n no. of data using Lagrange’s interpolation.                                                                                                                                       (5+7)
(Visited 480 times, 1 visits today)

Posted By : Digvijay | Comment RSS | Category : Old Question Collection, Third Semester
Tag :

Post a Comment

Your email is never published nor shared. Required fields are marked *

*
*

Wordpress DMCA
Community | Toolbar | Android App | Founder/Developer : Hari Prasad Chaudhary | CSIT Portal Manager : Digvijay Chaudhary